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Abstract

Artificial Intelligence (AI) systems help organizations manage complexity: they reduce the cost
of predictions and hold the promise of more, better and faster decisions that enhance produc-
tivity and innovation. However, their deployment increases complexity at all levels of the econ-
omy, and with it, the risk of undesirable outcomes. Organizationally, uncertainty about how to
adopt fallible AI systems could create AI divides between sectors and organizations. Transac-
tionally, pervasive information asymmetries in AI markets could lead to unsafe, abusive and
mediocre applications. Societally, individuals might opt for extreme levels of AI deployment
in other sectors in exchange for lower prices and more convenience, creating disruption and
inequality. Temporally, scientific, technological and market inertias could lock society into AI
trajectories that are found to be inferior to alternative paths. New Sciences (and Policies) of the
Artificial are needed to understand and manage the new economic complexities that AI brings,
acknowledging that AI technologies are not neutral and can be steered in societally beneficial
directions guided by the principles of experimentation and evidence to discover where and how
to apply AI, transparency and compliance to remove information asymmetries and increase safety
in AI markets, social solidarity to share the benefits and costs of AI deployment, and diversity
in the AI trajectories that are explored and pursued and the perspectives that guide this pro-
cess. This will involve an explicit elucidation of human and social goals and values, a mirror of
the Turing test where different societies learn about themselves through their responses to the
opportunities and challenges that powerful AI technologies pose.
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1 Introduction

We build powerful Artificial Intelligence (AI) systems to manage the complexity of our economies,
and these systems make our economies more complex. This recursive loop holds important op-
portunities and risks that I explore in this essay.

Complexity creates demand for artificial intelligences when it surpasses the capacity of natural
ones. Compare the pin factory in Adam Smith’s Wealth of Nations with a modern, globally inte-
grated and robotized industrial facility. The latter is much more complex: it involves many more
actors, activities and interactions mediated by sophisticated technologies and responding to many
more forces, such as changes in global demand, technologies and the behaviour of competitors.
It generates more information that can be used to make more decisions and new types of deci-
sions.1 An obvious way to manage this complexity is by employing more workers to monitor and
analyze the environment and act upon their insights. Humans are after all excellent at rapidly as-
sessing and responding to new situations. But these individuals will be costly to hire and difficult
to organize - imagine the army of workers and the level of organization that would be required to
recommend products to users in an e-commerce platform such as Amazon. Abundance of infor-
mation turns human attention into a scarce resource that has to be carefully managed [2]. Firms
do this through routines and processes that act as organizational algorithms offering a menu of
responses to different scenarios [2, 3].2

It is here that AI comes into play: Once trained on labelled data or artificial simulations, AI
systems are able to partially mimic perceptive and flexible human decision-makers at a low cost,
making predictions to inform action [4, 5].3 This decrease in the cost of predictions increases their
supply, and therefore the number of intelligent decisions that an organization can make economi-
cally, enabling personalization and interactivity in its products and services.4 AI systems also help
remove biases from human decision-making, and aid in the control of large technological systems
such as scientific and industrial infrastructures and internet platforms generating amounts of data
too vast and fast for human decision-makers. The potential applications are pervasive. This is why
AI is being recognized as the latest example of a General Purpose Technology (GPT) with similar
transformational potential to steam or electricity [7, 4].

And as was the case with those technologies, AI deployment brings with it dramatic changes
that increase complexity at all levels of the economy.5 It creates new interdependencies between
the investments that organizations make and the practices they adopt, between the behaviours

1 This is a manifestation of the Law of Requisite Variety (LRV ), according to which a system needs a repertoire of
responses as broad as the environment it seeks to manage [1].

2For example, the standard forms and procedures that help bureaucracies reduce diverse situations to a few cases.
3Complex environments also create more information that can be used to train AI systems in tasks with higher

sample complexities - that is, tasks that are more diverse and where more data capturing a wider set of contingencies is
required for effective performance [6].

4Note that this follows a functional definition of intelligence as adaptation to context rather than consciousness.
5I use the term deployment to refer to the development and diffusion of AI systems in organizations, markets and

economies, together with complementary investments in skills, processes, business models and social and cultural atti-
tudes and habits.
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of actors in markets and groups in society, and between the decisions that are made over time.
These interdependencies increase the risk of externalities, information asymmetries, coordination
failures and strategic behaviours that could lead to undesirable outcomes from AI deployment. I
review them in turn.

In the rest of this section I highlight related work, my contribution and normative standpoint,
define AI and its link with Machine Learning (ML) and overview its potential impacts, highlight-
ing why it is increasingly being recognized as the latest example of a transformative GPT. I also
mention some features of AI that sets it apart from previous GPTs - in particular its fallibility (the
fact that AI systems remain much narrower and more brittle than the human intelligences they try
to emulate, and therefore liable to fail in unexpected situations) and its intangibility (which makes
its deployment subtle and speedy).

Section 2 focuses on organizational complexity. AI requires complementary investments by orga-
nizations, institutions and individuals. For example, a firm has to select and implement an AI sys-
tem, develop processes to turn its predictions into decisions and hire human workers with highly
sought-after skills to manage this process and prevent errors - all of this while competitors watch
closely to learn from its successes and avoid its mistakes. This is a process fraught with uncer-
tainty that could hinder adoption, experimentation and knowledge sharing, particularly in those
sectors where implementation is riskier (say, because it involves higher-stakes decisions) and/or
more complicated because there are more organizations involved [8].

Section 3 shows that AI also increases market complexity. Uncertainty about AI impacts, low
visibility in how it is being adopted andmisalignment in incentives between actors create a thicket
of informational asymmetries in AI markets - for example, AI researchers might opt for designing
AI systems that perform well against existing benchmarks but are brittle and opaque in ways that
limit their applicability. The firms that adopt AI systems know better than their users how per-
sonal data feeds their AI systems, and the metrics they are seeking to optimize. Malicious users
will seek to manipulate the behaviour of AI systems for their benefit by feeding them spurious
data. Behaviours like these could lead to races to the bottom in safety and respect for user rights,
the abandonment of AI in some sectors, and the internalization of AI by organizations seeking to
reduce transaction costs in ‘AI lemon markets’.

Section 4 focuses on the social complexity brought about by information and power asymmetries
between social groups. Individual choices in one area (such as buying a product based on AI)
generates outcomes elsewhere (the conditions for workers in the sectors deploying AI systems).
Individuals need to choose between cheaper, more convenient goods for them and disruption for
other workers. Without coordination, they might opt for extreme AI deployment in the sectors
where others work, and suffer it in their own. Different social groups will prefer others to bear
the brunt of this disruption and seek to manipulate AI deployment to their advantage. This could
increase inequality and create societal conflict.

In Section 5 I look at AI’s temporal complexity: As AI systems and their complementary infras-
tructures are deployed, they create inertias in the research questions that are pursued, the techno-
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logical architectures that are developed, the business models that are perceived as valid and even
the human skills and capabilities that are valued. Some of these inertias will be hard to overcome
in the future even if the trajectories chosen early-on, in a state of uncertainty and/or under the
influence of opportunistic agents and vested interests, are found to be inferior to the paths not
taken.

Together, all these factors create new economic complexities for human societies to understand
(through research) and manage (through policy). I outline some principles for this research and
policy effort in Section 6, under the rubric of New Sciences (and Policies) of the Artificial [2]. The
foundational principle for this effort is that of directionality: AI technologies are not neutral. They
can evolve in many different trajectories some of which are more desirable than others. Policy can
play a role in steering AI deployment in a societally desirable trajectory based on the principles
of experiments and evidence to measure AI impacts and identify their complementary investments;
transparency and compliance to reduce the risk of unsafe and abusive outcomes in AI markets; soli-
darity to ensure that the benefits and costs of AI deployment are widely shared by different social
groups and communities; and diversity in the scientific, technological and market AI trajectories
that are explored so as to avoid premature lock-in to inferior paths of development.

Figure 1 summarizes key ideas in the essay.

1.1 Related work

I build on a growing body of literature on the economics of AI and in particular on the papers pre-
sented at twoNBERworkshops organized in 2017 and 2018 [9, 10]. Broadly speaking, those papers
approachAI as a neutral and homogeneous General Purpose Technology (GPT) that greatly lowers
the costs of prediction and will transform productivity and innovation once it is deployed together
with suitable complementary investments [11]. The principal economic risk from AI deployment
is that it will be too fast and disruptive, creating mass unemployment, rising inequality and politi-
cal unrest [12].6 With some exceptions, it is assumed that AI systems will eventually ‘succeed’ and
that the main challenge will be for human societies to adapt to that success.7

By contrast to them, I place a stronger emphasis on situations where AI systems fail (at least to
some degree) when they are deployed, creating costs that are unevenly distributed between social
groups and over time. To do this, I draw on the literature onAI/Machine Learning (ML) safety and
fairness risks [17, 16, 18, 19] and on key notions from evolutionary economics and Science, Tech-
nology and Innovation studies [20, 21, 22]. The AI risks literature has identified important failure
modes in AI systems that could limit their generality, create hidden and unfairly distributed costs
and require complementary investments (for example in supervision and monitoring) that should
be taking into account during their economic analysis. Meanwhile, the evolutionary economics lit-

6Extreme scenarios where AI eliminates all jobs and brings the singularity are also considered in some cases [13, 14].
7The exceptions include [15], which considers the risk of mediocre AI systems that displace employment but do not

result in sufficient improvements in productivity to augment demand for labour, [4], which acknowledges the potential
for short term declines in user experience as organizations adopt AI systems, and [16], which approaches AI systems as
agents whose behaviour might undermine the goals of the organizations that adopt them.
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Figure 1: This figure summarizes key ideas in the essay: uncertainty about how to combine AI
components (such as technologies, skills or processes) a, b and c in organization oi creates orga-
nizational complexity. Information asymmetries about the nature of the inputs provided by other
organizations in market mi creates market complexity. Social dilemmas in the deployment of AI
between sectors creates social complexity. Path dependence in decisions and investments in the for-
mation of technological trajectory T creates temporal complexity. Each of these complexities cre-
ates the risk of deviations from an ideal scenario for AI deployment that can be addressed through
policy interventions informed by the policy principles I set out in the essay.

erature suggests that technological trajectories are neither neutral nor homogeneous. They unfold
in historical processes where accidents, mistakes and biases create path dependencies leading to
potentially inefficient outcomes and externalities between generations [23]. These ideas lead me to
pay more attention to the incentives and behaviours of AI researchers and scientists and to high-
light the role of Research and Innovation (R&I) policy in AI deployment than is generally done in
the literature.

Befitting the title of the essay, the resulting picture is more complicated than what one finds
when considering the economic impacts of AI in silos or neglecting AI’s fallibility and path depen-
dence. Although my focus on economic failure modes for AI makes can make for somber reading
in parts, this approach helps to identify what forces take us away from desirable, highly beneficial
scenarios for AI deployment, as well as the research and policy principles that can help detect and
remedy those deviations.
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1.2 Normative standpoint: Rawlsian AI deployment

Throughout the essay, I refer to ‘desirable’ and ‘undesirable’ outcomes during AI deployment in
organizations, markets, society and over time. These normative statements are based on the view
that the deployment of AI should be just in a Rawlsian sense [24], in line with [13]. A just model
for AI deployment would be accepted by a group of individuals making decisions behind a veil
of ignorance where they did not know their position in society, their endowments and personal
objectives. These individuals would accept that model for AI deployment if it enhanced (or at
least did not reduce) their personal liberties and equality of opportunity, and if any increases in
inequality that it brought were accompanied by improvements in the situation of the most disad-
vantaged members of society. This structure would strengthen broad-based social support for the
deployment of AI systems with pervasive impacts.

At each level of deployment (organizations, markets, social groups, dynamic) I consider what
features would be conducive to this outcome, and what forces take us away form it. The principles
I propose in the conclusions support various (alternative or complementary) strategies to address
those deviations, to be selected based on societal values and their practical effectiveness.8

1.3 AI definitions, applications and limits

1.3.1 What is it, and how does it work?

According to the Oxford Dictionary, Artificial Intelligence is the ‘theory and development of com-
puter systems able to perform tasks normally requiring human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages.’ This definition captures the goal of
augmenting or automating different aspects of cognition that I alluded to in the introduction but
tells us little about the shared characteristics of those tasks, or the nature of the technologies used
to implement AI systems in practice. To make the discussion more general (in terms of the func-
tions and tasks it covers) and specific (in bounding the components of AI systems), I define them
as ’technological systems whose function is to inform or automate behaviours in dynamic situations.’ This
definition captures the idea that AI systems need to be able to effectively adapt to a variety of situa-
tions - a hallmark of intelligence. Doing this requires sensors that collect data from the environment,
analyzers that extract patterns from these data and recommend decisions that lead to changes in
behaviour through effectors.

Computer and cognitive scientists have pursued different strategies to build AI systems since
the 1956 ‘Summer Research Project on Artificial Intelligence’ that arguably kick-started the field: Their
initial approach (known as ‘Good Old Fashioned AI’) involved designing systems that process in-

8For example, AI disruption in labour markets could be alleviated by directing AI R&D towards labour-augmenting
(rather than labour-displacing) applications, training those who have been displaced or compensating them through
social policies. Public engagement and policy experimentation and learning between nations that follow different ap-
proaches could help identify a suitable policy mix leading to fair AI deployment. One obvious challenge I come back
to in the conclusion is that this standpoint for AI deployment clashes with those that might be adopted in authoritarian
societies, making it difficult to reach an agreement and coordinate development.
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puts following sequences of ‘if-then’ rules hard-coded into the AI system [25]. In the 1980s, the
‘expert system’ approach sought to codify the decision-making processes of human experts into
readily available knowledge management systems that would offer suitable responses to different
situations [26]. Both approaches failed to deliver sufficiently flexible and reliable AI systems be-
cause the range of factors and exceptions to be taken into account inmost complex decision-making
scenarios (e.g. understand the context of a sentence to be able to translate between languages ef-
fectively) greatly exceeds the expressivity of most logical systems (e.g. the rules of grammar and
dictionaries between languages). Further, many important cognitive faculties required for sensing
the environment, such as object or speech recognition cannot be easily codified into discrete sets
of rules. Paraphrasing Michael Polanyi, if we knowmore than we can tell, howwill we impart that
knowledge on AI systems?

In the last twenty years, Machine learning (ML) algorithms that learn patterns from training
data (supervised machine learning) and develop successful strategies by trial and error (reinforcement
learning)[27] have bypassed some of these limitations, leading to the development ofmore powerful
AI systems. In these AI systems, assemblies of machine learning predictors act as sensors that
use data to generate predictions about the environment. These predictions feed reward function
analyzers that consider the benefits and cost of different scenarios: for example, given a credit
card transaction that is identified as suspicious, what are the costs of ignoring it if it turns to be
fraudulent versus the costs of inconveniencing a customer if it turns out not to be fraudulent?9

These reward functions can be implemented into effectors that execute behaviours automatically
(as is the case with a self-driving car or an AI targeted advert), or inform human workers who
combine the AI prediction with their own judgment to reach a decision (like a radiologist who
combines the AI analysis of a patient scan with her expert knowledge before recommending a
treatment). See Figure 2 for a summary of AI systems’ functions, capabilities and inputs.

The difference betweenAI andML is subtle: AI systems often combinemultipleML algorithms
to sense a range of dimensions of the environment and generate predictions that are integrated to
inform decisions and actions [5]. An example of this would be a robot that uses computer vision,
simultaneous localization and mapping and motion control to navigate an environment. It is also
useful to think in terms of ‘levels of AI’. We say that a system has a higher level of Artificial Intelli-
gence when it requires less human input at key stages (i.e. there is a higher level of automation in
decision-making and behaviour).

Recent advances in AI have been driven by increasing amounts of labelled data from internet
sources, cheaper computation and storage from better hardware and cloud computing, and in-
novations in ML algorithms, particularly with the development of multi-layered neural networks
that extract abstract patterns (features) from unstructured data such as images, video or sound
with less need from human intervention (deep learning), and reinforcement learning systems that
automatically adapt their strategies to feedback from the environment in order to optimize their
performance [28].

9This example is taken from [4].
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Figure 2: This figure represents the functions, capabilities and inputs of an AI system and its in-
teractions with the environment.

All this has resulted in significant improvements in AI performance in domains such as com-
puter vision, natural language processing, speech synthesis, mobility and game playing, and its
application in many different industries [29]. Some examples include recommendation engines
for retrieving and targeting information, images and video, classification systems that label im-
ages with comparable accuracy to human experts, natural language translation and recognition
systems, and autonomous vehicles and robots that can operate in less controlled environments,
and with less need for human supervision than was the case before.

In addition to imitating commonplace human capabilities at scale, AI systems can also go be-
yond human capabilities, thus augmenting human decision-making. For example, AI systems are,
at least in theory, less prone to cognitive biases and over-fitting (inferring erroneous patterns from
noisy data) than humans, so they can complement and enhance human decisions in domains such
as recruitment, finance or the law [30, 31, 32].10 AI systems can also parse big, fast data streams to
control and optimize complex systems such as energy and digital infrastructures [33].

10This assumes unbiased input data and a stable decision environment. I consider the problems that appear when
these conditions are not present next sub-section.
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1.3.2 Where can it be applied?

AI’s ability to automate and augment decision-making makes it widely applicable to many eco-
nomic activities and industries. This is why it is being recognized as the latest example of a Gen-
eral Purpose Technology (GPT) like electricity or the combustion engine [11]: this means that it is
technologically dynamic (susceptible of rapid improvements in performance), applicable in many
industries, and capable of spawning follow-on innovations in these new application areas. Recent
analyses of the development and diffusion of AI in different academic disciplines, computer sci-
ence domains and industries supports this idea [7, 34]. The levels of R&D activity related to AI has
increased, AI methods and techniques are diffusing into more sectors and disciplines, and they are
proving influential wherever they do [10].

Ultimately, AI could greatly improve productivity by making the production and distribution
of existing products and services more efficient, and powering new products based on automated
decision-making. Amazon’s AI-optimized supply chains and its virtual assistant Alexa illustrate
both types of innovation. Even further, AI is an ‘invention in the methods of invention’ that could
improve the productivity of scientific discovery and invention processes by, for example, enabling
a faster and more comprehensive exploration of opportunities in research fields such as pharma-
ceutics or material science where innovation requires searching for valuable combinations in vast
search spaces that can now be explored faster and deeper by AI systems [7, 35]. In doing this, AI
could countervail stagnating productivity in science and technology (the fact that ‘good ideas are
getting harder to find’) and drive productivity and economic growth in years to come [36]. The
potential applications of AI are of course not limited to the private sector: AI could prove pivotal
in tackling important social challenges from an aging population to environmental sustainability.

1.3.3 Where does it fail?

AlthoughAImethodologies andMLalgorithms are broadly applicable, once anAI system is imple-
mented in a particular domain (that is, the system is trained on a particular dataset and integrated
with a reward function for making decisions), it loses generality. This has several dimensions:

1. AI systems are narrow: AI systems need to be trained with large amounts of data from a
domain. Their learning is highly specific to it, and difficult to transfer to other areas. The AI
system for a self-driving car trained to operate in highways may not be suitable for cities.

2. AI systems are brittle: Related to the point above, the performance of AI systems declines if
they are exposed to inputs that were not present in their training data. The AI system for
a self-driving car trained in dry weather might break down when exposed to wet weather.
There is a risk of AI errors and failures whenever an AI system is implemented in a real-
world environment involving new situations, environments subject to change or environ-
ments where there are actors that want to manipulate the AI system [17, 37].11

11A salient case of this are adversarial examples that create catastrophic declines in performance when inputted into
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3. AI systems are greedy: they maximize the amount of information they extract from the train-
ing data, but this creates the risk that they ‘over-fit’ and lose the ability to generalize to new
information [39].12 This also makes AI systems careless: they extract information from data
regardless of its quality. An AI system trained on biased data will incorporate those biases
into its model of the world. This can create problems when AI systems are applied in do-
mains where existing data reflect social injustice or prejudices, as may be the case with the
criminal justice system, university admissions, recruitment or access to credit [41, 42].13

4. AI systems aremindless: They literally optimize a pre-set performancemetric or reward func-
tion even if this creates unexpected side-effects or contravenes the goals of their adopter
[18, 16, 43]. This means that the goals of AI systems have to be carefully aligned with those
of the organization deploying them in order to avoid surprising and unsafe AI behaviours.

5. AI systems are opaque: The optimization procedures that they follow to learn from data can
be hard to interpret and explain. This makes it difficult to evaluate their safety, predict their
behaviour and explain their outputs, rendering them unaccountable. Current theoretical
understandings of the operation of state-of-the-art AI systems based on deep learning are
still imperfect.14

1.3.4 How is AI different from other GPTs?

One feature of AI that sets it apart from previous GPTs is its relative intangibility: previous deploy-
ments of steam, electricity and information and communication technologies involved substantial
investments in bespoke machinery and physical infrastructure. By contrast, key components of
AI systems such as data, ML algorithms and reward functions are informational and therefore
intangible.15

This intangibility leads to two newdynamics inAI deployment that underpin several situations
and processes I will discuss in the rest of the essay: First, the adoption of AI can be done subtly: it
is hard to determine, ex ante, whether a firm has implemented an AI system, to what degree, with
what purpose and with what complementary investments: a robot based on sophisticated deep
learning algorithms is hard to distinguish, initially, from one based on less advanced systems,
and the recommendations generated by social networks using very different AI systems (and with

an AI system [38].
12ML researchers use methods such as regularization (penalizing excessively complex models) and cross-validation

(evaluating models in test data-sets they were not originally trained on) to reduce overfit, and make their models more
generalizable and robust [40].

13For example, if ethnic minorities are more likely to be arrested, or if they are more likely to re-offend due to dis-
crimination in the labourmarket or policing, this will create a biased dataset. Model predictions will reflect these biases.

14Thismirrors the situation in the early days of the Industrial Revolution, where practical (Ω) knowledge (know-how)
about how to apply the steam engine raced ahead of theoretical (Λ) knowledge (know-why) about the physical processes
underpinning its performance [44].

15This is not to say that AI systems do not have a physical substrate: they are stored and trained using increasingly
specialized hardware, and some applications such as robots, self-driving cars and autonomous vehicles also require
hardware effectors. But even in these cases, the intangibility of data and models means that some functions such as
storage and processing can be rented flexibly from cloud computing services.
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different goals) look quite similar in the surface. This makes it difficult to measure and monitor AI
deployment and therefore estimate its impact, reduces the scope for spillovers (since it is hard for
potential imitators to identify what combinations of practices are used by leading organizations, or
even who those organizations are) and creates information asymmetries between different actors
in AI markets. I discuss them in section 3.

Second, AI deployment can be done speedily: compared to other technologies requiring sig-
nificant investments in infrastructure, it is relatively easy for an organization to adopt AI systems
using widely available open source software implementations and train themwith its own data or
data available fromweb sources. This could lead to very fast rates of deployment that raise impor-
tant risks if the deployment of AI creates hidden costs and side-effects, or irreversible outcomes. I
study these situations in the rest of the essay.

2 Organizational complexity

TensorFlow, a popular Deep Learning software framework developed by Google engineers can be
freely downloaded from GitHub, an open source software repository.16 Does this mean that any-
one can reap the economic benefits of AI simply by downloading, installing and starting to use this
tool? Hardly. We know from the analysis of previous GPTs that successful deployment requires
complementary investments in infrastructure, skills and processes - AI systems are synergistic [45].
What are some of their complements?

First, an AI system needs to be trained [28]. This requires labelled datasets or simulated envi-
ronments about the domain where the AI system will be deployed, together with computational
resources to store and process the data during training. AI systems are designed, implemented
and tuned by experts with machine learning and software engineering skills. They are integrated
with broader decision-making systems by decision-system designers, and their outputs are mon-
itored for errors by supervisors [46, 4, 47]. Finally, the decisions they automate or inform need to
be executed: this involves skilled workers who provide goods and services based on AI-informed
decisions - for example, workers collaborating with robots in a warehouse.

Organizational processes, ways of working, structures and business models need to change
too.17 Previous studies of data-driven decision-making suggest that organizations with more and
better data benefit from practices that empower employees to make decisions based on those data
without consulting their supervisors [48, 49]. AI systems that easily redistribute information through
an organization (for example, via portable devices) could strengthen the advantages of decentral-
ization. However, brittle AI systems might require restrictions in worker agency and mobility to
make their work environment more predictable, as is already done in robotized factories. Sophis-
ticated supervisory and decision-making systems that keep humans in the loop help detect and

16https://github.com/tensorflow/tensorflow.
17In the sameway inwhich impacts of electricity in industrial productivity did notmaterialize until factories radically

reorganized their layout to reap the benefits of flexible electric motors, decades after its arrival [21].
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remedy algorithmic errors, specially in high-stakes situations where mistakes have severe conse-
quences [46].

In the rest of this section I show why the need to combine all of these technological, skills and
organizational components makes the deployment of AI systems organizationally complex, and
why this might lead to undesirable outcomes.

2.1 Desirable scenario

In the desirable scenario, organizations deployAI systems in away that secures their benefitswhile
reducing their risks. This is possible because the suitability of an AI system for an organization’s
context and goals is well understood, as are the complementary investments that the organization
needs to carry out in order to realize its benefits and manage its risks. Complementary skills are
readily available in the market, and if new ones become necessary, educational institutions and
trainers have the required information and incentives to address these changes in demand.

Organizations have incentives to carry out experimentswithAI systems, and these experiments
generate public knowledge that other organizations can learn from.

Suitable applications of AI appear in different industries and domains, both commercial and
non-commercial, for the benefit of a broad range of consumers and constituencies. This parallel
exploration of the potential uses of AI spawns further innovations that jump across sectors creating
new applications, knowledge and benefits in a self-reinforcing process of innovation and learning.

2.2 Deviations

Here I summarize why organizational complexity could lead to deviations form the desirable sce-
nario. Some of these ideas are formalized in the Mathematical Annex, and represented in Figure
3.

The first aspect of organizational complexity that leads to undesirable outcomes is that, as is the
case with any innovation, there is uncertainty about the impacts of AI systems. While it is expected
that the automation and augmentation of human decision-making could yield great benefits, this
is based on estimates subject to error. This could lead to failures in deployment, particularly if
there are systematic biases in actors’ assessment of AI prospects, either because they are too op-
timistic (leading to failed deployment with disappointing benefits or unexpected accidents), or if
they are too pessimistic (leading to aborted or excessively slow deployment that foregoes potential
benefits from AI systems in some sectors). Differences in estimates of benefits and risks and risk-
aversion across industries creates AI sectoral divides: AI systems are being deployed rapidly in
technology and media sectors, and more slowly in sectors such as health or government where the
commercial rewards are less immediate and the risks from errors are higher. Higher returns to AI
deployment in fast adoption sectors could make AI components scarce in slow adoption sectors,
further contributing to their divide.

Second, uncertainty about AI impacts is compounded by the need to deploy AI systems to-
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Figure 3: This figure presents the mechanisms through which different aspects of complexity im-
pact generate undesirable outcomes

gether with investments in complementary technologies, skills and processes (I refer to these as AI
complements), about which there is also uncertainty. The interactions between AI complements,
and between AI complements and existing practices and processes increases the risk of disruption
and failures in deployment. It could also result in an AI divide between those organizations that
are more flexible and able to experiment, and those that are more rigid. A manifestation of this
is the rapidity with which AI is being deployed in technology companies and start-ups, and the
expanding productivity gap between them and other organizations. Another implication of un-
certainty in AI complements is that those models for AI deployment that are ‘simpler’ and require
fewer complements or less coordination with other actors (such as workers) could be preferred
over other models that are more complex but perhaps also more beneficial.

Third, AI experimentation creates knowledge spillovers if organizations can free-ride on the ex-
periments of innovators without suffering any of the risks. This could discourage experimentation,
increase secrecy in deployment, or drive leading innovators that discover valuable AI components
to secure control over them to restrict imitators or benefit from their entry (i.e. internalize the
externalities from deployment). We see this in how leading adopters of AI systems in the technol-
ogy sector are using their experience and know-how to build cloud computing infrastructures and
platforms for AI deployment that they then sell to other organizations. Here, it is worth noting
that subtlety and complexity in AI deployment are likely to hinder imitation by making it more
difficult for followers to reverse-engineer the precise deployment model used by leaders. These
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factors will further contribute to an AI organizational divide, and hinder AI deployment in slow
adoption sectors lacking leaders to imitate.

Fourth, a market for AI components will develop. Suppliers that spread the costs of experi-
mentation with AI components over larger markets can offer these components (and their com-
binations, such as cloud computing infrastructures that integrate data storage, processing and
prediction) more cheaply and with less risk of failure. At the same time, the suitability of these
outsourced components for an organization depends on its ‘distance’ from average market needs.
Organizations with unique needs or in slow adoption sectors are less likely to be well-served by
these external components, further dampening their AI deployment and increasing the risk of fail-
ures. This could also result in a ‘dual market’ for AI systems where leading organizations develop
bespokeAI systems adapted to their needs, and offer commoditized systemswith limited scope for
innovation to mass market users. Once again, this increases the distance between leading adopters
of AI and other organizations.

2.3 Complexity in deployment and skills

The interactions between AI deployment and skills have received much attention in the literature,
where there is a general consensus that creative and social skills that complement AI deployment
will be augmented by it, while routine skills are more likely to be displaced by it[50, 51, 52].18

Displacement might not necessarily lead to a net loss of jobs if the associated improvements in
productivity increase demand for other products froma sector, or elsewhere in the economy.[54, 15]

The organizational complexities that I have discussed in this section also interact with these
labourmarket outcomes: first, firmsmayprefer to deploy labour-displacingAI systems over labour-
augmenting alternatives if this requires less coordination with other actors such as workers or the
suppliers of skills whose independent decisions will determine successful implementation.19 Sec-
ond, workers and educators also need to make decisions about what skills to learn / supply in a
state of uncertainty about business decisions that will determine if these skills are augmented or
displaced: they have to infer demand for skills from the complex process of organizational deploy-
ment described above [55]. Third, there is uncertainty about the actual impacts on productivity
of the AI systems that are eventually adopted. It is possible that firms overestimate the benefits
of AI systems and implement mediocre AI systems, or that insufficient and/or erroneous com-
plementary investments generate mediocre impacts on productivity which prove insufficient to
offset labor displacement [15].20 Coordination in the supply of skills that complement AI systems
becomes harder in this state of uncertainty, potentially hindering AI deployment and its benefits.

18This also has important implications for inequality through the creation of ‘hourglass’ shaped labour markets di-
vided between highly productive and remunerated occupations that complement AI, and low productivity, low remu-
neration occupations that are difficult to automate.[53]

19Labour-displacing AI systems could be simpler to implement if they require less changes in interdependent labour
practices - this will depend on the regulatory framework.

20Next section I consider the externality aspect of this.
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3 Market complexity

How can a firm know what it is getting when it transacts with another in an AI market? AI sub-
tlety makes it hard to determine what AI system has been adopted, for what purpose with what
complementary practices and processes, and with what impacts. This creates market complexity
manifested in a thicket of information failures leading to unsafe, mediocre or abusive AI applica-
tions, the abandonment of AI systems in some markets, or their internalization by a small number
of powerful firms.

I use the term AI ‘market’ expansively, to refer to various activities related to the development,
adoption and application of AI systems in market transactions, as well as their regulation. Some
participants in these markets include:

• AI agents are the algorithms implemented in AI systems. Although they lack ‘agency’ in
the traditional sense, they have design goals (metrics and rewards functions to optimize)
and ideal goals (the goals of the organization implementing them, which inform the design
goals).

• Scientistswho research new and improved AI systems in public research organizations and
universities, and in private sector laboratories and R&D units. AI scientists seek to advance
the state of knowledge aboutAI systems and their performance, gain acclaim from their peers
and attract research funding from the public and private sector.

• Adopters are organizations that deploy AI systems to achieve commercial, public or social
goals. Here, I also include other important actors that shape the commercial application of
AI systems, such as investors who fund AI ventures.

• Individualswho create data that is used by AI systems, interact with AI-derived predictions
and decisions, andwork in environments where AI has been or might be adopted. They have
multiple, potentially conflicting goals, such asmaintaining and improving their personal and
political rights, working conditions and salaries, and accessing affordable, convenient and
safe goods and services.

• Government refers to the public authorities of the country where the AImarket is based.21 It
provides public services and funds public goods (such as basic research) and uses various in-
struments to encourage societally beneficial behaviours and discourage illegal behaviours.22

It is represented in AI markets by public agencies such as research funders or regulators.
21AI intangibility means that many AI markets are international and therefore involves participation by multiple

governments with different goals, further increasing the complexity of the situations I describe.
22I acknowledge this is a stylized, idealistic view of the role and behaviour of governments.
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3.1 Desirable scenario

In the desirable scenario for AI deployment in markets, scientists develop AI systems using repro-
ducible methods that others can review and assess, taking into account social and business needs
and clearly communicating the strengths and limitations of the systems they develop.

AI systems are transparent and well understood, easy to implement in a way that is aligned
with organizational goals, and unlikely to generate unexpected effects (or at least the types of al-
gorithms and contexts where such effects are likely to occur are well understood, so that risks can
be managed).

Adopters select those AI systems that are most valuable for them and implement them trans-
parently and safely, together with suitable complementary investments (in line with the desirable
scenario in 3). In doing this, they take into account the rights of their workers, as well as any wider
impacts that the AI systems they adopt might have, including in labour markets.

Users and consumers are aware of how AI systems are being deployed in the organizations
they interact or transact with, and the implications that this has for their personal data and the
products and services they are offered. They are thus able to make informed decisions about what
products and services to consume.

All of this takes place in a way that is consistent with societal goals and the regulations to
uphold them.

3.2 Deviations

Information asymmetries take AI markets away from the desirable scenario: each transaction in
an AI market is a principal-agent situation where the principal (for example, a government agency
procuring an AI system to predict the risk of recidivism in the criminal justice system) has limited
information about the menu of strategies available to the agent (in the previous case, the company
that developed and trained the model). This creates incentives for the agent to follow a strategy
that maximizes her benefits at the expense of the principal, or that creates costs and risks for the
principal. The principal might itself be the agent in another transaction (e.g. the adopter agency
deploys AI systems leading to unfair and discriminatory decisions against individuals). In this
noisy market, it is difficult to determine who is liable for algorithmic errors if/when they happen.

The rest of this sub-section provides examples of information failures in transactions between
actors in AI markets (see the Mathematical Annex for a formalization and 4 for a visual represen-
tation).

Manipulation and subversion of AI systems

Narrow and brittle AI systems can be manipulated and subverted by other actors. For example,
these actors might want to use an AI service in a way that contravenes its terms of service, access
valuable information from a secure AI platform, or degrade its performance for financial or politi-
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Figure 4: This figure presents information thickets between different actors in AI markets.

cal reasons. I use the termGaming to refer to situations where an actormanipulates an AI system to
behave against its ideal goals. For example, the actor might use misleading language to distribute
spam or fake news in a social media platform, or implement a cyberattack using a strategy that
mimics a regular pattern of user behaviour [56, 17]. The gaming actor might be an individual or an
AI agent such as for example a bot or a Generative Adversarial Network designed to produce syn-
thetic data hard to classify accurately by the AI defender [38]. Sabotaging refers to situations where
individuals inside an organization (for example its workers) engage in acts that directly damage
AIs or degrade their performance.

Risky deployments

Risky AI deployments are situations where insufficient information about the real performance
and goals of an AI system lead to deployments with reduced benefits, hidden costs or insufficient
safeguards. Although the organization adopting the AI system might not be seeking to benefit
from its riskiness, it could still benefit economically if unsafe AI systems are cheaper to adopt than
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safe ones.
Some risky implementations of AI includes cases where an AI agent overfits the data, extracting

noisy patterns from it, and creating a divergence between expected and real performance leading
to lower benefits and/or higher costs. Unsafety refers to interactions between AI systems and indi-
viduals that create risk for the latter [41]. A Misaligned AI agent pursues goals that diverge from
those of its adopter. This could be because the AI reward function is insufficiently or imperfectly
specified, or the AI has been trained on biased data, creating an ‘omitted payoff bias’ (optimizing
the wrong metric) [30, 16, 18].

The final type of AI safety risk is aAI Crashwhere AIs operating in complex environments with
many other actors, both human and algorithmic, behave in unexpected ways leading to system
failures.23 This is an example of a situation where the deployment of AI systems generates hidden
costs that are not realized until they surpass a threshold value, and the crash is triggered [46].

Irresponsible Research and Innovation

In this case, an actor behaves irresponsibly or fraudulently in the market: she does this by exploit-
ing, withholding or neglecting information about the characteristics and impacts of the AI systems
that she is developing or adopting. She is able to do this because the costs of her behaviours are
hidden or incurred by other actors in the transaction or interaction, or in the broader AI market
and society [58].

One case is Misapplication. Here, an AI adopter deploys a narrow AI system in a task that is
unsuitable for it because it involves new data it was not trained on, because the stakes are higher
than in its original domain (the consequences of mistakes are more severe) or because it requires
more interpretability or explainability in outputs than in the source domain. Exaggeration refers
to situations where scientists overstate the benefits of an AI system or understate its costs / risks,
potentially leading to its misapplication by adopters, or to an over-supply of funding for research
to deliver these benefits.24

I use the term Irreproducibility to refer to a variety of behaviours that hinder scientific progress
in AI [59]. This includes the dissemination of research papers without the materials required to
reproduce the results so as to impede competing scientists or to hide flaws in the research. Also
the use of ambiguous language or unnecessary complexity, techniques that over-fit to benchmark
datasets, a preference for complex and opaque models with high performance in known metrics
over more explainable and transparent approaches whose performance is harder to measure, or a
bias towards publishing novel results. All these behaviours create uncertainty about the benefits,
costs and limitations of new AI methods, and hinder learning between scientists.

Dual-use risks stem from the generality of AI, which creates the possibility that AI systems de-
23An example of this would be the 2010 ‘flash crash’ in theNewYork Stock Exchange, whereHigh-Frequency-Trading

(HFT) algorithms began reacting to each other’s actions in a high-speed recursive loop that crashed the market [57]
24This was the cause of previous ‘AI winters’, with drastic declines in funding for AI research after disappointments

with its performance.

17



veloped for socially beneficial goals (e.g. computer vision systems for self-driving vehicles) will
be applied in ethically questionable or dangerous ways (such as mass surveillance or autonomous
weapons) [17]. This failure may take place between research funders and scientists who carelessly
or opportunistically develop dangerous AI systems, or between scientists and malicious adopters
who deploy AI systems in unexpected ways. Since much AI research is disseminated in public
academic journals, and/or implemented (or implementable) in freely available open source soft-
ware packages, this makes it harder to control how andwhere AI research outputs are applied [60].
Hidden automation is a situation where the actions of individual consumers and workers generate
data which are, without their knowledge or permission, used to train AI systems that automate
labour.

Finally, Mediocrity refers to situations where adopters implement AI systems with disappoint-
ing impacts . In addition to systems that are misapplied, unsafe or prone to generate AI crashes
and unexpected failures, this also includes AI systems that degrade the quality of an user’s expe-
rience while saving costs for their adopter, or mediocre AI systems that displace labour without
substantial gains in productivity (this results in an externality for society in terms of increased
welfare costs, societal conflict etc.) [12, 15, 13].

Exploitation and hold-up

Situations of exploitation occur when AI deployment infringes on the rights of individual users,
consumers, or workers, or abuses a dominant position (in terms of market power or access to in-
formation) over a business partner.

This includes applications of AI that infringe on privacy, misuse personal data, attempt to ma-
nipulate the behaviours of individuals or encourage them to engage in addictive behaviours, use
the data they supply in ways that they would perceive as unfair (such as for example through price
discrimination of information discrimination), as well as applications that put individuals at risk
(particularly when they are in positions of vulnerability) or degrade their working conditions.

On the business-to-business side, cases of hold-up include situations where anAI adopter trad-
ing with another organization manipulates prices, exploits its data or abuses a dominant position
due to control of strategic assets such as data , IT infrastructure or access to consumers. It also in-
cludes situationwhere a provider of AI components exaggerates their benefits or their applicability
for their client, resulting in their mis-application.

Dilemmas

Dilemmas refers to situationswhere the uncoordinated behaviour of individuals and social groups
leads to societally undesirable outcomes. I focus on these situations next section.
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3.3 Some outcomes

What could be the outcome of all these information thickets? Given the large number of actors
involved, and the complex interdependences between their behaviours, we could envisage many
possible situations. I sketch three of them.

First, there is the possibility of a race to the bottom with careless and/or unfair AI deployment
through unsafe and/or exploitative practices and business models. There are few incentives to
invest on making AI systems safe and protect user rights, and those organizations that do cannot
compete with less principled rivals. Unsafe AI systems display unexpected behaviours when they
are deployed in high-stake domains and complex social systems, resulting in AI crashes and in-
creased systemic risks. Scientists develop powerful but potentially unsafe andunethicalAI systems
atop a knowledge base that is weakened by dubious research practices. In spite of this, individuals
continue using and consuming AI goods and services because they are essential or addictive, or
because they lack information about the way AI systems are implemented and their hidden costs
and risks.

The second scenario is abandonment. In this case, individuals exit AI markets that are perceived
to be unsafe and abusive, perhaps in response to a catastrophic event or mass AI failure. Funding
for AI research stops or is curtailed, and the use of AI systems is restricted to a small number of
applications where their performance and conditions for effective operation are well understood
and strictly regulated.

A third scenario is internalization: the information failures above increase transaction costs in
AI markets. Participants need to verify and validate any AI systems and AI-based products and
services they procure, manage the risk of hold-up and algorithmic failure due to exploitative and
unsafe implementations of AI systems by suppliers and clients, and reassure consumers against
the perception of a race to the bottom in AI deployment. To reduce these transaction costs, these
organizations internalizeAI development and adoption, recruiting researchers and acquiring other
AI adopters developing key AI components. This has the added benefit of restricting competitor
access to valuable data / software / analytical skills, and of increasing economies of scale and
scope in AI.25 The resulting concentration in AI activity makes it easier to control deployment
and restrict unsafe and unethical AI applications, but could also lead to a decline/co-opting of
public AI knowledge bases and skills potentially raising barriers to AI deployment in other sectors
and organizations, and less competitive and more fragile AI markets with higher concentration of
activity in small number of organizations that become an attractive target for malicious actors.

4 Social complexity

Who is to blame for unsafe and disruptive AI deployment modes? In this section, I suggest that
the answer could be ‘everyone’. The reason for this is that individuals make, as consumers and

25In other words, it limits the scope for imitation of AI experiments discussed in Section 2.
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tax-payers, decisions that influence AI deployment in other sectors and public service domains.26

If they are oblivious or indifferent to the costs of those decisions for other individuals, this might
create situations of extreme AI deployment. Those with superior power and influence could even
seek to manipulate deployment and make others bear the brunt of AI risks, increasing inequality.

4.1 Desirable scenario

In the desirable scenario, consumers choose products and services with a level of AI intensity in
production that takes into account not only price and convenience, but also the impacts on employ-
ment andworking condition in the sectorswhereAI is being deployed, aswell as other hidden costs
such as declines in safety, increases in market power in the supply side or labour market demand
side etc. They opt for those products and services that generate improvements in productivity
sufficient to compensate those who lose-out from AI disruption.

4.2 Deviations

If the products and services supplied by industries that follow extreme models for AI deployment
are cheaper ormore convenient, consumersmight opt for them even if they create disruption in the
sectors where they are adopted, or they result in hidden costs due to declines in safety, increases in
market power, rights infringements and externalities such as increased social spending in response
to lower salaries and rising unemployment. These behaviours are more likely if individuals are
selfish, if they are unaware of the working conditions in sectors with extreme AI deployment, or
if they are myopic or uninformed about the indirect impacts of extreme AI deployment. The fact
that their own working conditions are affected by consumers in other sectors making decisions in
a similar way turns this situation into a social dilemma (the scenario is described more formally in
the Mathematical Annex, and illustrated in Figure 5). A key idea here is that if these individuals
had coordinated their consumption choices, theymight have opted for less extreme, more balanced
models for AI deployment that avoided or compensated for some of the disruption brought about
by AI systems.

Individuals might seek to create barriers to extreme adoption of AI in their own sector. For
example, their sector could be highly concentrated and therefore less responsive to consumer de-
mand for AI products and services, its workers might be able to impose regulatory barriers to the
adoption of AI , or they might have the knowledge and influence to steer AI research towards AI
applications in other sectors but not theirs.

If (as might be expected) individuals’ influence correlates with their political and economic
power, then those in more powerful and wealthier social groups could manipulate AI deploy-
ment for their benefit at the expense of weaker, disadvantaged and disenfranchised groups. In
line with this, some sectors experiencing faster AI deployment, such as ’gig economy’ platforms
and e-commerce, tend to employ workers who are less educated, affluent and politically influen-

26Their demand determines the level of AI deployment (’intensity’) in the sectors they consume from.

20



Figure 5: This figure illustrates the social dilemma between individuals who buy cheap AI-based
products from other sectors and in doing so degrade the working conditions of other individuals
employed there. The dashed lines indicate deployment trajectories that powerful individuals will
try to prevent to avoid disruption in their own sector. The text in the boxes could be modified to
represent a situation where AI is being deployed in public service domains.

tial, while deployment of AI in sectors that employ more educated and wealthy groups such as
professional services or education are experiencing slower, more balanced deployment.27

Individuals who derivemost or all their income from capital and are not altruistic or aware and
responsive to indirect/hidden AI costs have incentives to encourage extreme AI deployment across
the economy, since this gives them high consumption benefits with no workplace costs in terms of
unemployment or worsened work conditions. Further, we might expect extreme AI deployment
to be more profitable for them than balanced deployment, at least in the short term. Given strong
concentration in capital income, this group has the economic and political influence to steer AI
deployment in an extreme direction.

4.3 Public sector deployment

The discussion above could be extended to social choices about the deployment of AI in the de-
livery of public services. In this case, tax payers select the levels of AI deployment in the public
services that other groups use. Extreme deployment creates costs for users in terms of AI errors,
less ability to challenge algorithmic decisions etc., and benefits for tax-payers in terms of lower
taxes. As before, uncoordinated decision-making could lead to extreme levels of adoption, and if
powerful social groups steer AI deployment towards extreme models in the public services most
used by weaker groups, increasing inequality.28 This conclusion echoes concerns about the ex-
treme and careless deployment of AI in public services involving vulnerable groups such as mi-

27It is of course difficult to disentangle the political economy forces I am focusing on here from other factors such as
differences in the skill composition, potential AI impacts and complementary factors that also affect the deployment of
AI in different sectors. This seems a fertile area for future research.

28A variant of this model is where majorities opt for the deployment of AI systems that create costs for minorities,
for example if they have been trained on biased data reflecting a history of prejudice or inequality.
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norities (policing, criminal justice system and immigration) and poorer and less educated groups
(e.g. social care).

5 Temporal complexity

What decisions about AI systems being made today could take us down deployment trajectories
that we we might regret in the future? The discussion so far has given some cause for concern.
It suggests that uncertainty in AI complements, information asymmetry thickets, social dilemmas
and uneven distribution of power between social groups could result in AI deployments that are
mediocre, unsafe, abusive and unjust.

An important question is how easy - or hard - will it be to shift the direction of deployment in
response to new information about its benefits and costs, and their distribution. Today’s experi-
ments would feel less risky if there was scope to overturn them, were they found to be a failure.

5.1 Desirable scenario

In a desirable scenario for AI deployment, decisions about what research, technology and business
trajectories to pursue today take into account future benefits and costs for all agents, including
dimensions of performance that might seem less relevant today but could prove important in the
future, and changes in social behaviour and cultural attitudes that unfold as powerful AI systems
are deployed in the economy and society.

Multiple social groups, actors, and disciplinary and national perspectives are incorporated into
the formulation and execution of AI R&D agendas. AI deployment involves an active monitoring
of irreversible commitments, sunk costs and points of no return in order to avoid scenarios that
reduce diversity, competition and the scope for future choices. There is an active effort to maintain
pluralism in the portfolio of AI R&D activities and business models that are explored, acknowl-
edging uncertainty about what paths will prove rewarding and which ones will not. The loss of
efficiency due to reduced scales of activity and the need to address fragmented markets and var-
ied user needs is accepted as the cost of keeping societal AI options open, and learning from their
parallel exploration.

5.2 Deviations

Uncertainty about the benefits and costs of different AI trajectories, sunk costs in deployment (spe-
cially for more deliberative or patient models of deployment that deliver benefits over longer time
horizons), path-dependence in scientific and technological knowledge (the fact that the costs of
switching technological trajectories accumulate over time), and network effects in AI industries
and platforms create the risk of lock-in to AI trajectories which could eventually be found inferior
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but hard to deviate from).29 I go through these sources of inertia in turn (the Mathematical Annex
formalizes these ideas, and 6 summarizes them).

Figure 6: Sources and outcomes of path dependence in AI trajectories.

Path-dependence in science and technology

Scientific and technological progress takes place inside paradigms [61, 22] that are populated and
animated by a communities of scientists/ technologistswith a shared language, tools, methods and
worldview (including agreement about what problems and questions are more important or inter-
esting). This standardization improves communication and facilitates the accumulation of knowl-
edge, including through learning-by-doing where the effectiveness of methods and technologies
improves over time as their glitches are ironed out, and their complementary combinations of
inputs are discovered [62]. This also means that new technological opportunities are identified
through an exploration of the adjacent possible: a new advance opens up additional opportunities
that build on it [63]. Pursuing these opportunities through incremental innovations along a techno-
logical trajectory is less risky than trying to open up completely new trajectories, and may indeed
be the only option if new components of a technological architecture have to be integrated with ex-
isting ones. All these factors explain why alternative scientific and technological approaches tend
to suffer a ‘liability of the new’ when they face the incumbents.

29Following [22], I define technological trajectories as the manifestation of an AI technological paradigm a particular
combination of technologies andAI components to achieve valued technological and organizational objectives. I discuss
further the components of the current AI paradigm in Sub-section 5.2
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The current state of AI R&D development echoes some of these dynamics: ‘normal AI science’
involves the development of powerful deep learning and reinforcement learning algorithms that
compete against each other and humans in benchmark datasets [28]. Although this paradigm has
achieved much, it also produces AI systems that are brittle, opaque, reliant on large volumes of
labelled data and computation and perhaps more focused on human displacement than augmen-
tation [43]. These limitations are being addressed through investments in AI complements such
as controlled environments for the deployment of AI that restrict the amount of new situations it
is likely to face, additional data collection and labelling through crowdsourcing and Generative
Adversarial Networks and investments in specialized hardware and more powerful cloud com-
puting infrastructures.30 An abundant supply of these complementary inputs and infrastructures,
together with the skills of thousands of ML and AI researchers trained in the worldview, meth-
ods and preferred metrics of the dominant deep learning paradigm make it hard to challenge by
alternative approaches that could address some of its limitations.31

Entrenchment in markets

Previous sections have described multiple forces pushing towards concentration in AI markets,
including hard to imitate, subtle AI deployments, the desire to internalize externalities from ex-
perimentation and reduce transaction costs in AI markets with strong information asymmetries,
control over important AI components, and rent-seeking by influential actors. This concentration
could become entrenched for several reasons.

First there are network effects where an increase in the number of users or suppliers of comple-
mentary goods in a platform such as an app storemakes it more attractive [64]. Aswith technology
standards, challenging these platforms requires persuading a critical mass of users to coordinate
their migration to a new venue. AI systems that increase a platform’s ability to extract information
from its user base, make better recommendations, filter information more effectively, or improve
the efficiency of its processes couldmake the position of established internet platforms even harder
to contest than it is already [10]. Profitable AI-driven organizations also have the resources to at-
tract research talent, acquire potential competitors and lobby government for beneficial policies
and regulations, further cementing their dominance.

Changes in individual preferences, attitudes and habits also increase the costs of switching
away from the dominant players and business models by altering the dimensions of quality along
whichproducts and services are evaluated: for example, if consumers become less concerned about
privacy or unsettled by highly accurate personalized recommendations, this can decrease the at-
tractiveness of AI trajectories that are less reliant on the analysis of personal data. If consumers
grow accustomed to algorithmic errors and glitches, or to interact with inscrutable black box algo-

30One could even argue that demand for public sector innovations such as the Universal Basic Income to tackle the
risk of mass unemployment is a ‘policy complement’ to labour displacing AI systems developed in this paradigm.

31Having said this, a growing recognition of the brittleness and inefficiency in Deep Learning, including anomalies
such as ‘adversarial examples’ is renewing interest in AI approaches involving causal concepts, common sense and logic.
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rithms, this will reduce demand for improvements in algorithmic safety and interpretability.32

5.3 Outcomes

The discussion above implies that AI deployment has first-mover advantages: once a scientific and
technological trajectory becomes established, and AI leaders gain dominance, it might be difficult
to challenge them.

An awareness of this dynamic motivates strong investments on AI development by corpora-
tions and nations seeking to gain a position of dominance in AI markets, and to shape AI’s tech-
nological trajectory in a way that is aligned with their own capabilities and values. This thinking
underpins the unfolding ‘AI global race’ between territories such as the US, China or the EUwhose
visions for AI diverge in terms of the role of the private and public sector, the importance of pri-
vacy and explainability, and willingness to apply AI systems in sensitive domains such as military
applications and for government surveillance [65].

This race could become one to the bottom in terms of safety, user rights, labour augmentation
and impacts in productivity if flawed systems and practices become locked-in, also resulting in AI
systems of limited or risky applicability in other sectors where dimensions of performance such as
explainability or safety are more important. In other words, an undue narrowing of the trajectory
of AI deployment could limit its generality and ultimately, its benefits for humanity.

6 Conclusion: Towards a New Science (and Policy) of the Artificial

In this essay I have argued that even though the direct economic impacts of AI (cheaper predictions
and more decisions) are simple, its impacts are anything but. Complementarities in inputs, infor-
mation asymmetries in markets, social dilemmas in deployment and path dependence over time
could limit the benefits of AI to a small number of organizations, sectors and social groups, reduce
safety, abuse rights, concentrate power and increase inequality in ways that could be socially and
politically unsustainable [13, 53, 12].

Avoiding these negative scenarios requires a new agenda of research and policy to understand
andmanage the economic complexities that powerfulAI systems bring. FollowingHerbert Simon’s
terminology, I refer to them asNew Sciences (and Policies) of the Artificial [2]. I conclude by reviewing
some principles that should inform this agenda.

First, it is important to recognize that AI is not a neutral technology and that some trajecto-
ries of deployment will be societally preferable over others based on the scale of their impact ansd
its distribution over sectors, organizations, social groups and time. It is necessary to identify and
strengthen those societally beneficial trajectories of AI R&D. Drawing on some of the issues highlighted
above, this includes supporting streams of research to improve theoretical understandings of AI

32Ultimately, highly pro-active, personalized recommendations from AI systems could even decrease the exercise of
individual agency on which the functioning of markets and democratic institutions is predicated. This raises important
questions about cultural evolution and its drivers and inter-temporal aspects beyond the scope of this essay.
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systems and to develop AI systems that are safer, more explainable and more conducive to labour
augmentation, and supporting innovation missions that encourage the deployment of AI in new
sectors where it could create significant public and social benefits, kick-starting processes of ex-
perimentation and learning that speed up deployment. This can also help countervail commercial
biases towards the development of AI systems that are opaque, narrow and labour displacing. De-
livering this agenda will require suitable incentives for researchers and AI adopters (for example,
programmes for AI diffusion in business that encourage labour augmenting AI technologies), im-
proving the governance of AI research and a better evidence base about the pace and direction of
AI deployment based on detailed, timely data itself analyzed using new sources of data and AI
and ML methods [66, 67].

Second, there is the need for experimentation and evidence to reduce current levels of uncertainty
about the (broadly defined) economic impacts of AI and its complements. This involves a system-
atic programme of experimentation in a variety of organizational contexts, using rigorousmethods
and paying special attention to indirect impacts and side-effects of AI deployment [68]. This sort
of analysis will be particularly important in high-stakes domains where there are justifiably large
barriers to experimentation, and in collective intelligence environments involving complex collab-
orations between many organizations [8]. Comparing current organizational performance with
what could be achieved through the judicious deployment of AI systems can take us beyond over-
pessimistic views of the impacts of AI that risk entrenching a status-quo dominated by human
decision-makers that are not without their failures and biases [30]. The results of these studies
should be widely and consistently shared to maximize collective learning about the opportuni-
ties and risks of AI systems in different sectors, and to encourage diffusion of good practices and
coordinate the supply of complementary inputs, in particular skills.

Third, it is critical to ensure transparency and compliance in the adoption of AI systems to reduce
information asymmetries in AI markets. This involves regulatory systems that clearly identify
which AI applications are permitted and which are not, monitoring systems to ensure compliance
with those rules, and systems to increase public awareness of how AI systems are deployed in
different organizations and platforms to help consumers make better-informed decisions (this in-
formation should be accompanied by complementary policies to enable consumer exit and voice,
such as data portability and rights to explanation [6]). A thorny issue here will be that of balancing
safety and fairness with the freedom to experiment so as to avoid stifling innovation, particularly
in sectors and domains where the incentives for this are weaker in the first place. A stronger evi-
dence base about the nature and extent of AI impacts and their complementary inputs following
the experimentation and evidence principle could help delineate more effectively what are the ar-
eas where AI innovation can be permisionless, and those where it should be restricted [69]. All
these efforts should build on and complement ongoing efforts to embed ethical principles into AI
that are necessary but not sufficient, without verification and penalties, to ensure well-functioning
AI markets [70].

Fourth, and in line with the notion of Rawlsian AI deployment that informs this essay, social
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dilemmas in AI deployment can only be avoided by ensuring coordination and social solidarity in AI
deployment: building on the points above, this requires supporting directions of AI R&D agreed
to be desirable, encouraging experiments to verify their impacts and minimize their negative side
effects, and designing and enforcing regulations aboutAI deployment. The spatial, sectoral and so-
cial distribution of AI impacts should be closely monitored to inform compensatory interventions
aimed at ensuring that the benefits and costs of AI deployment are fairly shared [13]. All this needs
to be informed by a programme of broad-based public engagement that reflects the generality of
AI and the far-reaching nature of its impacts.

Fifth and last, diversity in AI trajectories should be preserved to avoid a premature lock-in to in-
ferior paths of deployment. This will require active monitoring of the scientific, technological and
economic landscape to identify sources of concentration, homogeneity and fragility, and proac-
tively intervening to preserve diversity through targeted streams of R&D funding, competition
policy and regulation. Any irreversibilities and sources of lock-in that are identified should be
openly and publicly debated and, as much as possible, empirically explored through experiments
and test-beds to minimize the risk of regretting the trajectories of development that are eventually
pursued.

Following these principles will require significant institutional innovations involving new ac-
tors or networks of actors to coordinate research and policy activities, and new systems to collect
and analyze data and design and implement interventions, including via AI systems [71]. These
policy directions should be shaped by social agreements about what is useful, desirable and fair
that can only reached through sustained public discussion and social learning where economic
analyses, experiments and data will be an important input among many. One particular challenge
here will be to find ways to align the motivations and interests of countries with different, po-
tentially conflicting visions for AI deployment. One could reformulate Rawls’ original position
around countries instead of individuals [24], and consider what principles and institutions should
govern the global deployment of AI in a way that is just, and accepted by all [72]. Such analysis
goes beyond the scope of this essay, but it is an urgent one to undertake.

Whatever shape it takes, the process of collective self-discovery that lays ahead [73] could work
as a mirror version of the Turing test where different human societies learn about themselves -
their values, goals and capabilities - through their responses to the opportunities and challenges
opened up by the powerful AI systems they have created.
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Mathematical annex

The sub-sections here explore mathematically the issues raised by different types of complexity
considered over the essay.

Organizational Complexity

Deploying AI in a firm

Consider a firm f using j components p to produce a good it sells at a unit price. This includes
specifics skills and forms of capital, processes, organizational forms and business models. For
example, p1 could refer to the number of engineers, p2 to the level of employee empowerment, p3
to the investment in cloud computing etc.

Each of the components that the firm uses have a risk riε(0, 1) associated to its novelty. Riskier
components bring potentially higher benefitsB because they help the firm stand out in themarket.
However, they also generate failures F for example when they cause accidents and errors, create
legal liabilities and reputational damages etc.33 This means that ri > rj =⇒ Bi > Bj . A firm will
only consider using a novel, risky component if there is an upside. Components also have a cost
ci.

Based on this, the profits of a firm πf using component mix P will be:

πf = Πj
i=0(1− ri)Bi −Πj

i=0riFi −
∑

ci (1)

Now let us assume that a new AI system becomes available. To realize its benefits, the firm needs
to acquire a complementary component (AI complement) pAI with risk rAI . The firm will adopt
the new AI component if its expected impact in profits is positive, that is, if:

∆B

∆F

(1− rAI)
rAI

>
Πj
i=0(ri)

Πj
i=0(1− ri)

+ cAI (2)

The ratio of expected benefits to risks (from failure) from integrating an AI component need to
offset the ratio of benefits to risks of the initial situation plus the costs of implementation. It is
more likely that the component will be acquired if its benefits are higher, if its risk is lower, if it
is incremental (the difference between its risks and the risks of the status is lower), and its costs
are lower. Sectors where these conditions hold will have more incentives to deploy AI than those
where they do not.

A firmmight need to acquire multiple new components PAI = {pAI,1, ..., pAI,k} to benefit from
AI. Building on equation 2, and assuming that all of the new inputs have the same risk rAI , we get:

∆Bk
∆Fk

(
1− rAI
rAI

)k
>

Πj
i=0(ri)

Πj
i=0(1− ri)

+ kcAI (3)

33One way to think of ri is a the probability of successful usage.
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As k increases, we expect the ratio of expected benefits to costs to decline, in part because the costs
of managing implementation complexity is likely to increase with the number of new components

being integrated δ(
∆B)
∆F
δk > 0.34. All this suggests that there are limits to the levels of ambition in AI

deployment inside a firm.

Disruption in implementation

Larger and more conservative organizations where (1-ri) (the reliability of existing components)
and BP (the benefits of the status quo) are higher and where the potential errors from existing
practices (FB) are lower have, other things being equal, less incentives to implement many AI com-
ponents.

This situation is reinforced if the successful deployment of AI systems requires a substantive
reorganization in current structures and processes, with (at least in the short term) a negative im-
pact on performance. In our model, this means that δriδk < 0. The costs of disruption is higher for
larger and more complex organizations where j is higher.35

Modularity and patience in deployment

One potential strategy to manage the risks of implementation is through modularity and experi-
mentation: experimenting with a smaller set of components v < k and learning from the outcomes
(here we assume that there is learning by doing so that δ(1−rAI,i)δt < 0 after implementation). This
strategy will be more attractive if the expected benefits of learning over a period offset the dis-
counted benefits of maximal adoption over that period.36

External vendors and their relevance

Some bundles of components (‘modules’) PAI,V = {pAI,V1 , ..., pAI,Vm}will be available from exter-
nal vendors who specialize in their development and integration so that:

B(PAI,V )Πm
i=0rAI,Vi + cAI,V − ρ(AI, V, f) > B(PAI)Π

m
i=0rAI,i + cAI (4)

This means that the expected benefits from sourcing this module externally minus a ‘relevance
penalty’ ρ are higher than the expected benefits of internal sourcing. The relevance penalty cap-
tures the fact that modules designed for a mass market of AI adopters will be less relevant for
firms with unique needs and firms that are lead users in sectors where AI has been more recently
adopted. Communicating those unique needs to the external vendor will be costly.37

34The derivative of the left side of 3 on k needs to be positive. With R = ∆Bk
∆Fk

, this means that δR
δk

+ ln(1 − rAI) −
ln(rAI) > 0

35We could represent these interactions in a matrix Mi,j where the rows i represent the new components and the
columns j represent the existing ones. Each cell xi,j represents the interaction between the new component and existing
practices (e.g. it could be xi,jε{0, 1} a penalty on the risk of rj of pj if xi is adopted . The matrix will be wider for larger,
older organizations than smaller, younger ones.

36The benefits of this strategy mirror those described by Simon in [2] and the notion of piecemeal social engineering
versus utopian social engineering in [74]. Note that here I ignore the possibility that δB

δ(nk)
>

∑n
k=0

δB
δK

, that is, the
existence of complementarities in implementation, which would increase the incentives for maximal AI deployment.

37Later on, I consider principal agent situations in the communication - that is, the fact that it is costly to assess the
expected benefits of external sourcing of AI modules.
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Learning, imitation, hiding and competing

Experimentation with new components and modules reduces their risks for an organization by
helping it to identify good practices. This learning has also ha public, collective dimension l:
Learning increases over time, and with the number of experimenters E (l =

δ(1−rAI,i)
δt > 0 and

δl
δE > 0).

Externalities from experimentation (the fact that a firm’s experiments benefit its competitors by
lowering their deployment risks rAI,i) can however lead to under-investment in experimentation
if many firms adopt a ‘wait and see’ strategy [11]. The extent of these externalities depends on the
distance ρ between the leader and the imitator, the level of secrecy in its experimentation (which
can be accomplished through subtle deployment), and implementation costs for the imitator if there
are interdependencies between the new components and existing practices. Further, lead experi-
menters can identify critical components for AI deployment (such as data, infrastructure, specific
skillsets etc) and secure their supply, which they can then use to hinder imitators, or charge them
to enter the market.

Of course, all of the above implies that imitating an experimenter is a voluntary decision. If
∆BAI is sufficiently large, deploying AI could be the only option for firms operating in (and not
willing to exit) competitive markets, regardless of the risks.

Coda: Uncertainty in estimates of benefits, costs and risks

Mant of the parameters informing firms’ decisions above, such as R(AI),∆B,∆E or ρ will be
biased estimates of real values with a confidence interval whose breadth depends on prevailing
levels of technological and market uncertainty. This creates the risk of over and under-investment
on AI, and of the adoption of mediocre or unsafe AI systems with disappointing upsides ∆B and
unexpected downsides ∆E.

Market complexity

AI principals and agents

Consider a transaction between two actors in an AI market, P and A where one of them P is the
principal, the A is the agent. In this situation, P is delegating an activity on A and A selects a
suitable strategy to undertake this activity. A can choose from a set of strategies S = {S1, ..., Sn}.38
Each strategy Si is associated to a tuple with outcomes for each actor k (Bi,k, Ci,k). The costs of
a strategy include the costs of its inputs as well as other important costs in terms of accidents,
algorithmic failures etc.

Subtlety inAI deployment creates an information asymmetry between principal and agent, giv-
ing the agent some discretion in the selection of S. Further, we assume that there is a misalignment
in incentives between the principal and the agent. If πk = Bi,k − Ci,k then δπA

δπP
≤ 0. Maximizing

the benefits for the principal might not be the optimal decision for the agent, perhaps because it
requires relinquishing some benefits (e.g. not exploiting all the data that has been obtained from
the user in a social networking site) or incurring in more costs (implementing more stringent and
costly supervision systems to reduce algorithmic errors). The specifics depend on the transaction.

When selecting her strategy, the agent also needs to take into account the possibility that the
principal will detect her behaviour with probability d, resulting in a fine F .39 I assume that d

38We could think of each of these as a set of inputs PAI presented above, with a vector of risk Ri.
39This fine could be a legal fine or a market penalty, like the decision to stop transacting with A.
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depends on the benefits of the transaction forP so that δd
δ(1−πP ) > 0 (as the benefits of the transaction

for P declines, she is more likely to become more suspicious of A’s behaviour. F depends on the
regulatory and competitive environment.

Given all this, the agent has an optimal strategy o such that:

o = arg max
oεS

(πA(o)− Fd((1− πP (o))) (5)

Situations of highermarket uncertainty/lower transparencywhere d is low, aswell as less stringent
regulatory or competitive regimes with lower F will lead to more aggressive profit maximization
by the agent at the expense of the principal (in terms of lower benefits from a transaction or higher
costs).

Hidden costs

AI costsmight be hidden from the principal. Perhaps they are not paid by the principal but by other
actors or groups in society she is meant to represent, or perhaps they only become manifest when
they overcome a threshold T . This will reduce the incentives for the agent to take into account
those costs when she selects S.40

Honest mistakes and error chains

An agent’s estimates of πA and πP could be biased, for example because she is adopting risky and
poorly understood AI components, or because she procured them from another agent A2 that is
maximizing its own πA2 at her expense. This increases Fd, not because the agent is behaving
opportunistically, but because of the technological and organizational complexity of the AI system
she is deploying, and opportunistic behaviours elsewhere in the AI value chain. The perception of
these risks could lead the agent to behave more carefully (adopt a S associated to higher πp), use
less risky AI components or monitor more stringently the risk of the AI components she sources
from other actors in this AI market.

Social complexity

I illustrate social complexity in AI deployment with a simple variation of the prisoner’s dilemma.
It involves an economy with two individuals I1 and I2 working in sectors, S1 and S2. Each indi-
vidual works in one sector and consumes from the other. When doing this, she can opt for goods
produced with a degree of AI intensity d. This has implications for the prices she pays and for the
employment outcomes and working conditions of the individual working in the other sector. Each
individual receives a work payoffwi,d (salary weighted by working conditions) and a consumption
payoff ci,d (price weighted by convenience and quality). The AI adoption scenarios and pay-offs in
sector Si are:

1. No AI deployment: The prices of Si products and the working conditions of its workforce
are wi,n and ci,n.

2. Balanced AI deployment: AI is deployed in a labour augmenting way: it increases the pro-
ductivity of the workforce in the deploying sector without damaging its working conditions.
The salarywi for workers in the sector iswi,b > wi,n due to the increase in productivity, while

40In 3, a decline in ∆E will result in an adoption of more AI components k.
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consumers buying from the sector receive a consumption payoff ci,b > ci,n due to decline in
prices/increases in convenience and quality.41

3. Extreme AI deployment: The deployed AI system is labour displacing and creates mass un-
employment. Those individuals who hold on to their jobs suffer degraded working condi-
tions and are paid lower salaries. Workers in the sector have a payoff wi,e < wi,n. Consumers
from the sector have a consumption payoff ci,e > ci,b due to a strong drop in prices, improve-
ments in quality and convenience etc.42

I assume that these individuals do not consider other important impacts of AI deployment
such as for example, declines in product safety or increases in market power. These costs might
be hidden from them, or heavily discounted because they will happen in the future. I also assume
that individuals are either selfish or ignorant about the impact of their decisions: they fail to take
into account the employment outcomes and working conditions of those in other sectors, or they
are not aware of them.

I represent pay-offs in Table 1 with some illustrative values (wi,n = 0, wi,b = 5, wi,e = −10 and
ci,n = 0, ci,b = 5, ci,e = 10). In line what I assumed above, wb,i > wn,i > we,i and ce,i > cb,i > cn,i.

I1 \I2 No deployment Balanced deployment Extreme deployment

No deployment I1:(0,0) I1:(0,5) I1:(0,10)

I2:(0,0) I2:(5,0) I2:(-10,0)

Balanced deployment I1:(5,0) I1:(5,5) I1:(5,10)

I2:(0,5) I2:(5,5) I2:(-10,5)

Extreme deployment I1:(-10,0) I1:(-10,5) I1:(-10,10)

I2:(0,10) I2:(5,10) I2:(-10,10)

Table 1: Pay-offs for AI deployment: Each individual Ii controls, through her consumption choices,
the intensity d of AI deployment in the other sector Si. The pay-off tuple represents pay-offs for
individual working in each sector Si. The first value in each tuple represents the work payoff wi,d,
and the second value represents the consumption pay-off ci,d . Although the social optimum is
achieved when both individuals select balanced adoption strategies in the other sector, the equi-
librium strategies are to select extreme adoption.

If we assume that pay-offs are fungible across individuals and activities (πd,d =
∑

iwi,d +∑
i ci,d), we see that the societally optimal scenario involves balanced AI deployment of both sec-

tors, with πb,b = 20. However, this scenario is unstable: without coordination, both individuals
have incentives to demand cheap and convenient goods based on extreme AI from the other sec-
tor. As a result, AI is extremely deployed everywhere with πe,e = 0. All individuals suffer unem-
ployment and/or degraded working conditions but enjoy access to cheaper and more convenient
goods.43 If they could coordinate their decisions, these individuals would have opted for a deploy-
ment scenario with a stronger work-life balance (literally).44

41I assume that workers in a sector are not adverse to technological change. If that was the case, wi,b < wi,n.
42The increase of productivity may create new economic opportunities for displaced workers but this is by no means

certain, and in the short-term they will experience disruption.
43However, cheaper goods may not be affordable for unemployed individuals as in [75].
44With these values ofwi,d and ci,d both individuals are indifferent between no adoption and extreme adoption. The
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Temporal complexity

Consider a situation where there are two alternative technological trajectories for AI, T1 and T2.
Each of them has an initial deployment cost di (this could include investments in infrastructure,
costs of adopting AI in businesses and government etc.). In each period t, the trajectory also incurs
a cost ci which includes the labour costs of AI researchers, engineers and supervisors, upkeep of
the data infrastructure andmodels and costs from algorithmic errors, disruption in labourmarkets
etc. Each period, the trajectory also generates benefits bi in terms of improved productivity.45 What
technology will be adopted? If we assume that future returns are perpetual and discounted at a
rate r, then T1 will be selected if:

(b1 − b2)− (c1 − c2)
r

> d2 − d1 (6)

That is, the net present value of T1’s returns compared to T2 have to be superior to its deployment
costs at the onset. This is the same as:

r >
(b2 − b1)− (c2 − c1)

d2 − d1
(7)

If the discount rate is sufficiently high (for example, if there are high levels of uncertainty about
the future leading to high discounts in future returns, or a perception of ‘winner-takes-all’ in AI
markets), AI technologies that are cheaper to deploy (low di) might be selected even if they are
inferior on a period-by-period basis.46 For example, if equation 7 holds and T1 is adopted, there
will be no incentives to switch to the alternative T2 for as long as (b2−b1)−(c2−c1)

r > d2 which is
bound to hold given equation 6. Changing trajectories is even harder if there is a path-dependence
- a switching cost li that accumulates over the time that a technology is installed. This could happen
if AI researchers and engineers learn skills that are specific to this AI technological trajectory, or
if users become accustomed to the platforms that use this modality of AI and its business models
(such as for instance trading personal data for ‘free’ goods and services). In that case, in period t
it only makes sense to switch to T2 if (b2−b1)−(c2−c1)

r > d1 +
∑t

i=0 li.
We can even imagine scenarios where T1 becomes progressively worse - it is shown to be a

technological dead-end with hidden costs - yet there is no economic reason to switch to T2. As
long as δ(c1−b1)

δt < l1, the costs of switching from this deteriorating AI trajectory to T2 increase over
time.

result would change with different pay-offs - say, if individuals place a premium on work over consumption, or if they
experience loss-aversion so that losses in wi,d outweigh gains in ci,d.

45This set-up mirrors the organizational complexity model, with ∆B captured in bi and ∆E and ci in ci.
46Here we could assume that human-displacing and less safe systems might enjoy an advantage over human-

augmenting and safe systems because they are simpler and cheaper to deploy, as discussed in Sections 2 and 3.
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